
BUILDING A LARGE-SCALE INFORMATION SYSTEM FOR THE
EDUCATION SECTOR: A PROJECT EXPERIENCE

Pawel Gruszczynski, Bernard Lange, Michal Maciejewski, Cezary Mazurek,
Krystian Nowak, Stanislaw Osinski, Maciej Stroinski, Andrzej Swedrzynski

Poznan Supercomputing and Networking Center
ul. Noskowskiego 10, 61-704 Poznan, Poland

{grucha, bernard, michalm, mazurek, krystian, stachoo, stroins, kokosz}@man.poznan.pl

Keywords: Large-scale, distributed system, education, public sector.

Abstract: Implementing a large-scale information system for the education sector involves a number of engineering
challenges, such as high security and correctness standards imposedby the law, a large and varied group of end
users, or fault-tolerance and a distributed character of processing. In this paper we report on our experiences
with building and deploying a senior high school recruitment system for five major cities in Poland. We discuss
system architecture and design decisions, such as thin vs. rich client, on-line vs. off-line processing, dedicated
network vs. Internet environment. We also analyse potential problems our present approach may cause in the
future.

1 INTRODUCTION

With more and more universal access to the broad-
band network infrastructure, advanced services and
applications can now be available not only to scien-
tific and business communities, but also to local ad-
ministration and the society in general. The trend to-
wards public sector applications of new technologies
is clearly visible in the objectives of such programmes
as eEurope (European Comission, 2002), Large Scale
Networking in the U.S. (NITRD, 2004) and PIONIER
in Poland (Weglarz et al., 2000).

One of the recently introduced information systems
for the city od Poznan (Poland) was the High School
On-line Admission System calledNabor1. Its intro-
duction in 2003 not only significantly reduced the
time and effort needed for the whole procedure, but
also made the process less stressful for the candidates
and their parents. AlthoughNabor is based on rules
and procedures specific to Poland, we feel that both
the idea of on-line admission (Capita, 2004) and the
technical solutions we used are relevant in a more
general context.

In this paper we report on our experiences with de-
signing and implementingNabor. Section 2 provides
background information on Poznan’s high school ad-
mission procedures and highlights the problems our

1Nabor is the Polish word foradmission

software solved. In section 3 we describe the archi-
tecture ofNabor placing special emphasis on the de-
sign trade-offs we had to evaluate. Section 4 provides
some implementation details and discusses the impli-
cations our design decisions may have in the future.
Finally, section 5 concludes the paper.

2 MOTIVATION

The key characteristic of senior high school admis-
sion in the city of Poznan is that the process is highly
competitive. Some of over 120 Poznan’s high schools
are always on demand and must every year reject a
great majority of their applicants, while the less popu-
lar schools can barely fill the places they offer. There-
fore, each candidate is allowed to apply to more than
one school, which increases the chances of getting
to a school matching his or her standards. For the
purposes of the admission process, all selection cri-
teria, such as candidates’ marks, sporting or artistic
achievements, are aggregated to a single numerical
value ranging from 0 to 200. In this way, each school
orders all its applicants by the aggregated mark and
fills all its places with the highest-scoring candidates.

However fair and simple the above procedure may
seem at the first sight, the lack of coordination be-
tween schools can cause many problems, the most se-
vere of them being the ’blocking problem’. This is

145



where the highest-scoring candidates apply and get
admitted to a large number of schools, but still de-
fer the decision as to which of them they finally want
to go to. Such candidates ’block’ places that could
have been taken by the medium-scoring applicants,
who, in turn, ’block’ places for the candidates with
the lowest marks. When a highest-scoring candidate
makes the final decision and thus frees the ’blocked’
places, the rest of the candidates may want to change
their previous decisions and move to more prestigious
schools. In practice, because of the ’blocking prob-
lem’, the ’manual’ admission would every year boil
down to a series of cascading decision changes and
endless updating of admission lists, which was both
time-consuming and stressful.

The main objective ofNaborwas therefore to pro-
vide high enough a level of co-ordination between all
high schools in the city as to reduce the time and effort
involved in the admission process. The key idea was
to gather all necessary data (e.g. candidates’ marks,
admission limits set by schools) in a central database
and design an algorithm that would generate admis-
sion lists for all schools in Poznan in one step. This,
however, was to be achieved at the cost of unification
and minor modifications to the admission procedures.

3 SYSTEM DESIGN AND
ARCHITECTURE

3.1 Requirements

Being largely influenced by legal regulations, the de-
sign and architecture ofNaborhad to meet a number
of requirements. Below we summarise the most im-
portant of them:

• High security standards. A great majority of data
processed byNabor (e.g. candidate’s marks) was
of a confidential character and had to be carefully
protected from unauthorised access and modifica-
tion. Also, the system had to be designed in such a
way as to minimise the possibility of manipulating
the admission results and to enable tracing possible
manipulation attempts.

• Fault-tolerance. The high school admission proce-
dures divide the whole process into several phases
and impose strict deadlines on each of them. For
example, one of the final phases is entering the can-
didates’ marks to the system, which must be com-
pleted by all schools within a time span of two or
three days. Therefore, our software had to be able
to operate even in case of a temporary failure of the
central database or the network infrastructure.

• Correctness of results. The future of thousands of
Poznan’s pupils depended on the admission results

generated byNabor. For this reason, every effort
had to be made to ensure that the results were 100%
correct.

• Varied user group. An important characteristic of
Nabor was also the fact that it required active in-
volvement of all parties of the admission process.
High school candidates used the system to find out
about the offered schools, fill in and print out the
application form. School administration usedNa-
bor to enter the candidates’ data and download the
admission lists once the admission had been closed.
Finally, for the local education authorities the sys-
tem provided a range of analytical reports, which
aided global planning.

3.2 Design decisions

Deciding on the architecture ofNabor required an-
swering a number of fundamental design questions,
such as whether to create a rich- or web-client appli-
cation or whether to adopt the on-line or the off-line
processing model. Below we evaluate the trade-offs
resulting from the three design questions we found
most important.

3.2.1 Rich client vs. web client

In the rich client application model (also referred
to as thick or fat client model) the major part of
data processing is performed by software deployed
on the client’s workstation. The software is usually
a standalone GUI (Graphical User Interface) appli-
cation, which contacts the central server only when
retrieving or updating business data. Below we sum-
marise the advantages and disadvantages of the rich
client model in the context ofNabor.

Rich client advantages

• Responsiveness and usability. Compared to web
applications, GUIs offer much shorter response
time and are easier to usability-tune (keyboard
shortcuts and navigation, accessibility options,
etc.). These are very important factors for sys-
tems which likeNabor involve entering massive
amounts of data over a short period of time.

• Familiarity. If the GUI application is consistent
with the host Operating System’s look and feel, it
can be a great learnability advantage. With a varied
end users group, good learnability of the software
may shorten the training period.

• Data caching. A standalone client can more eas-
ily cache data that a web application would have
to repeatedly fetch from the server. An example
of such data, a so called system dictionary, can be

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

146



a list of the city’s districts or schools. More im-
portantly, having a local cache, the rich client can
operate even when a temporary failure of the server
or network occurs.

• Customisable security options. Having more con-
trol over the communication between the server and
the rich client application makes it possible to im-
plement more advanced or non-standard data secu-
rity schemes.

• Server load. Compared to web clients, the GUI ap-
plications create much lower server load.

Rich client disadvantages

• Data serialisation. We feel that the most serious
problem with rich client applications is the need
for business data serialisation and deserialisation.
With data models containing lots of master-detail
relationships and high security requirements the
implementation of the business data communica-
tion layer becomes a nontrivial task.

• The need for installation. Usually, before the rich
client application can be used, it needs to be in-
stalled and configured on the user’s workstation,
which may be a source of external software depen-
dencies and incompatibilities.

• Possible platform-dependence. With certain im-
plementation technologies, a GUI application may
become platform-dependant. This creates an ad-
ditional burden of testing on all configuration the
software is meant to support.

• Software updates. A standalone application is
more difficult to update and maintain. Although
there exist frameworks, such as Java Web Start
(Sun Microsystems, 2004d), Rich Client Platform
(Eclipse Foundation, 2004) or Smart Client (Mi-
crosoft, 2004) that automate the process of update
checking and downloading, for the majority of end
users the process will not be perfectly transparent
and unobtrusive.

• Secure storage. To meet the required security stan-
dards, a standalone GUI application must imple-
ment its business data cache in such a way as to
eliminate the possibility of unauthorised access or
modification.

The central idea of the web application model is
that all processing of business data takes place on the
server side, the interaction with the client relying only
on a standard web browser and the HTTP protocol.
Below we highlight the advantages and disadvantages
of the web model from the perspective of theNabor
system.

Web client advantages

• No need for installation. The only required soft-
ware on the client side is a standard-compliant web
browser. This eliminates the need for software dis-
tribution, installation and the possible dependen-
cies.

• On-the-fly updates. A web application is updated
only on the server side, which makes the process to-
tally transparent and unobtrusive for the end users.

• No need for data serialisation. In a web applica-
tion all processing takes place on the server side
and the only data exchanged with the client are
HTML/XML/HTTP streams.

• Platform-independence. Because the only required
software on the client side is a web browser, it is
much easier to achieve platform-independence of a
web application.

Web client disadvantages

• Poor responsiveness. As all business data process-
ing occurs on the server side, and because the user
interface is based on HTML pages and forms, com-
pared to the rich client, responsiveness of a web ap-
plication is rather poor.

• Usability issues. Compared to GUI, an HTML-
based user interface is more difficult to work with
for the end users, because of e.g. only a limited
support for keyboard shortcuts.

• On-line operation. A web application requires that
the server connection be present at all times. In
case of a failure of the server or the network in-
frastructure, the web application cannot function at
all.

• Server load. Compared to the rich client model, a
web application generates a much higher load on
the server side.

3.2.2 Off-line processing vs. on-line processing

In the off-line processing model, the rich client appli-
cation2 normally stays disconnected from the server
and performs all operations on the locally cached
data. A connection is established, usually for a lim-
ited period of time, only to synchronise the stored data
with the central database. This architecture had the
following advantages and disadvantages from the per-
spective of theNaborsystem.

2implementing a web application in the off-line process-
ing model seems impractical

BUILDING A LARGE-SCALE INFORMATION SYSTEM FOR THE EDUCATION SECTOR: A PROJECT
EXPERIENCE

147



Off-line processing advantages

• Permanent server link not required. For the end
users still using dial-up connections, the off-line
processing model will be a less costly option.

• Fault-tolerance. Because it is very natural for an
off-line application to operate without server con-
nection, the tolerance to server and network failures
is in a sense built-in into its architecture.

Off-line processing disadvantages

• Data synchronisation. Part of the off-line process-
ing model must be an algorithm for synchronis-
ing business data and resolving possible conflicts,
e.g. concurrent modifications of the same data. On
many occasions, conflict resolution will require the
end user’s active involvement and decisions.

• Security infrastructure. Secure storage of cached
data will require additional development and test-
ing effort.

The primary assumption behind the on-line
processing model is that the client application (im-
plemented using either the rich or the web model)
for normal operation requires a permanent connection
with the server. Below we analyse the implications of
the on-line architecture for theNaborsoftware.

On-line processing advantages

• No need for data synchronisation. Changes made
to the data are immediately reflected on the server
and therefore the problems of conflict resolution
are avoided.

• Up-to-date data. In the on-line model the global
and up-to-date state of the data is always available
to all clients. This greatly simplifies the implemen-
tation of operations that depend on the global state
of the database.

On-line processing disadvantages

• Permanent server link required. The on-line
processing model requires that a permanent and
possibly broadband connection to the server be
available to all clients, which may turn out costly
for some end users.

• Possible security threats. An on-line rich client ap-
plication would usually require direct access to the
system’s database, e.g. through some Object to Re-
lational Model mapping layer. This would greatly
simplify the development, but also increase the se-
curity risks.

3.2.3 Dedicated network vs. Internet

In order to use the system in the dedicated network
setting, all clients would need to connect to a sepa-
rate network using e.g. a dial-up service. Clearly, this
solution incurs additional costs related to setting up
dial-up access points on the server side and provid-
ing modems for the end users. On the other hand, in
a dedicated network it is much easier to protect the
server and the client software from external attacks.
An alternative to the dedicated network is the Inter-
net, where the additional infrastructure expenses are
avoided at the cost of higher security risks.

3.3 SYSTEM ARCHITECTURE

Having analysed all available options we have de-
cided that the architecture ofNabor should be based
around the off-line rich client model and Internet
communication. We have therefore traded off the in-
creased complexity and possibly higher development
cost for better usability and fault-tolerance of the sys-
tem as a whole.

The reasons for choosing the off-line rich client
model were twofold. First of all, this model would
allow us to meet the most important design require-
ments — the high standard of data security and fault-
tolerance. To this end, we have implemented a so-
phisticated off-line business data transfer layer with
encryption and digital signature support (see section
4). Another incentive to use the off-line processing
model was the fact that due to the specific character
of Poznan’s high school admission procedures, many
of the general data synchronisation problems would
not at all occur inNabor3.

The only exception to the off-line rich client model
was the web site for high school candidates, where
they could fill in the application form and check the
admission results after the admission lists had been
released. For this service we wanted to avoid the
overhead of installation and configuration of the rich
client application. For the security reasons, the web
server operated on a separate read-only data source
that was periodically synchronised with the system’s
main database and contained results only for those
candidates who decided to open the electronic data
access channels (about 87% of the candidates decided
to do so).

Figure 1 summarises our discussion on the over-
all architecture ofNabor. High school administration
used rich client GUI applications to enter candidates’

3For example, only one of the schools a candidate is ap-
plying to has the right to enter and further modify the candi-
date’s data. Having noticed and exploited such assumption,
we can avoid the majority of conflict resolution problems.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

148



details, marks etc. to the system and to retrieve ad-
mission lists, while local education authorities used
rich client GUI applications to retrieve analytical re-
ports. Finally, high school candidates could find out
about the admission results using a web application or
a text message sent to a mobile phone.

Figure 1: The architecture ofNabor of Nabor

4 IMPLEMENTATION AND
EVALUATION

4.1 Implementation

We have decided to implement theNaborsystem us-
ing Java technology. Employing Java Swing (Sun Mi-
crosystems, 2004b) on the client side would make the
GUI application platform-independent, while using
non-proprietary Java technologies on the server side
would reduce the cost of the whole undertaking.

Noteworthy is how we implemented the secure off-
line storage and transport layer. To this end we devel-
oped the Offline Business Objects (OBO) framework,
whose primary motivation was to avoid duplication
of code and logic among various layers of the system.
Because of the high security and fault-tolerance re-
quirements, every operation performed by the off-line
client application had to be:

• packaged into encrypted and digitally signed units
called packets,

• logged both on the client and server side to enable
automated recovery after a failure

• authenticated and authorized,

• cached on the client side in an encrypted form,

• incrementally synchronized with the server.

The key observation here is that the above require-
ments specify some mechanisms underlying the com-
munication between client and server rather than the

Table 1:Naborproduction source code metrics
Hand-coded Generated TOTAL

KLOC 92 89 181
Classes 1956 650 2606

application business logic. Manual implementation
of all these mechanisms in each of 25 different types
of business objects would be tedious, error-prone and
would severely duplicate code. On the other hand,
none of the existing Object to Relational Model map-
pings, such as Hibernate (Bauer and King, 2004), pro-
vided off-line operation mode at that time4. We have
therefore decided to create the Offline Business Ob-
jects Framework, which would streamline and auto-
mate the process of generatingNabor’s business ob-
ject transport layer.

An essential part of OBO is a code generator. It
takes an XML-based declarative specification of busi-
ness classes and generates code which implements
all the required security mechanisms and addition-
ally serves as a persistence layer for business ob-
jects on both client5 and server side. The generated
code has many extension points which can be used
by a developer to implement the specific behaviour
of different business objects. One advantage of the
extension points approach is that the automatically
generated code need not be modified and can be re-
generated without losing or overwriting the customi-
sations (Herrington, 2003).

The Java implementation of the Offline Business
Objects framework was based on a number of non-
proprietary technologies, such as Torque (Apache
Foundation, 2004a), Velocity (Apache Foundation,
2004b), Java Cryptography Extension (Sun Microsys-
tems, 2004a) and Java Secure Socket Extension (Sun
Microsystems, 2004c).

In table 1 we provide a set of basic software metrics
related to theNaborproject source code, and in table
2 we showNabor software statistics from the user’s
point of view.

4.2 Evaluation

In 2004Nabor was deployed in five cities in Poland
on over 200 independent client workstations and han-
dled almost 30.000 high school candidates. Through-
out the operation period, the system performed

4Only recently the Service Data Objects standard (IBM
and BEA, 2004) has been proposed, which includes support
for off-line operation mode, defined there as the ’discon-
nected programming model’

5The design of the client-side persistence layer was to
a large extent inspired by the Prevayler (Prevayler, 2004)
framework.

BUILDING A LARGE-SCALE INFORMATION SYSTEM FOR THE EDUCATION SECTOR: A PROJECT
EXPERIENCE

149



Table 2:Naboruser interface statistics
UI element Size

GUI windows >100
WWW pages >20
PDF reports 22

Excel reports 60

smoothly and reliably, and to the users’ great satis-
faction6 all results were correct and delivered before
the required deadlines. No attempts to manipulate the
admission results were reported, no major usability
issues were discovered. We therefore feel that the
requirements of security, fault-tolerance, correctness
and usability were fully met, which proves the via-
bility of the off-line rich client model we decided to
adopt.

Security, usability and fault-tolerance ofNabor,
however, came at a cost. The cost was not only the in-
creased development and testing effort, but also lim-
ited extensibility of the whole system. Adding new
capabilities, such as a continuously operating edu-
cation management application, would break the as-
sumption on which we based our decision to use the
off-line processing model. Without the postulate that
one piece of data (e.g. pupil’s personal data) can be
accessed and modified only by one client (e.g. one
school), data synchronisation and conflict resolution
become unmanageably complex. Major functional-
ity enhancements would therefore require abandoning
the off-line rich client paradigm in favour of the on-
line web model.

5 CONCLUSION

In this paper we have reported on our experiences
with building a large-scale distributed information
system for the education sector. We described the
requirements the system was to meet and how these
requirements influenced the design and architecture
of the software. We also highlighted selected imple-
mentation issues and evaluatedNabor from the per-
formance and extensibility standpoint.

Our future plans include extendingNabor with
nursery, primary and secondary school admission
tools, as well as a continuously operating on-line ed-
ucation management application. Although in two
consecutive editions ofNabor, the off-line rich client
paradigm proved a perfectly viable approach, with
the shift from occasional towards continuous opera-
tion of the system, we will most likely abandon the

6According to the survey we carried out after the ad-
mission had finished, of all the users 53% were generally
satisfied and 45% were fully satisfied withNabor.

present model in favour of the more scalable on-line
web client approach.

REFERENCES

Apache Foundation (2004a).Torque: Persistence Layer.
http://db.apache.org/torque/.

Apache Foundation (2004b).Velocity Template Engine.
http://jakarta.apache.org/velocity/.

Bauer, C. and King, G. (2004).Hibernate in Action. Man-
ning Publications.

Capita (2004). Education Management
System: On-line Admissions and Transfers.
http://home.capitaes.co.uk/EMS/Modules/
AdmissionsandTransfers.asp.

Eclipse Foundation (2004). Rich Client Plat-
form. http://dev.eclipse.org/viewcvs/index.cgi/
∼checkout∼/platform-ui-home/rcp/index.html.

European Comission (2002). eEurope 2005:
An information society for all.
http://europa.eu.int/informationsociety/eeurope/
2005/indexen.htm.

Herrington, J. (2003).Code Generation in Action. Manning
Publications.

IBM and BEA (2004).Service Data Objects specification.
ftp://www6.software.ibm.com/software/developer/
library/j-commonj-sdowmt/Commonj-SDO-
Specification-v1.0.doc.

Microsoft (2004). Smart Clients: Combining the
Power of the PC with the Reach of the Web.
http://www.microsoft.com/net/products/client.asp.

NITRD (2004). Large Scale Networking.
http://www.itrd.gov/iwg/lsn.html.

Prevayler (2004). Prevayler: Free-software prevalence
layer for Java. http://www.prevayler.org/.

Sun Microsystems (2004a).Java Cryptography Extensions.
http://java.sun.com/products/jce/.

Sun Microsystems (2004b). Java Foundation Classes.
http://java.sun.com/products/jfc/.

Sun Microsystems (2004c).Java Secure Socket Extension.
http://java.sun.com/products/jsse/.

Sun Microsystems (2004d).Java Web Start Technology.
http://java.sun.com/products/javawebstart/.

Weglarz, J., Rychlewski, J., Starzak, S., Stroinski, M.,
and Nakonieczny, M. (2000). PIONIER — Optical
Internet in Poland. ISThmus, Poznan.

ICEIS 2005 - SOFTWARE AGENTS AND INTERNET COMPUTING

150


